Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Electron. j. biotechnol ; 15(4): 2-2, July 2012. ilus, tab
Article in English | LILACS | ID: lil-646952

ABSTRACT

Background: For successful in vitro plant regeneration, plant cell lines with multiple transgene integration and low transgene expression levels need to be ruled out. Although real-time polymerase chain reaction (RT-PCR) is a rapid way to accomplish this, it is also expensive and typically limits the size of the target sequence. Quantitative competitive PCR (QC-PCR) is proven to be a safe and accurate method for determination of both copy number and quantification of transcript levels of synthetic transgenes in transformed plants. Results: The glyphosate oxidoreductase genewas chemically synthesized and used to transform Brassica napus L. via Agrobactrium-mediated transformation. A construct containing the mutated form of a synthetic glyphosate oxidoreductase (gox) gene (internal standard) was prepared. Gene copy number was estimated in nine independent transgenic lines using QC-PCR as well as the standard method of Southern blot analysis. By quantitative RT-PCR, transcript levels were also determined in these lines. High (> 3), medium to high (2.2-3), medium to low (1-2.2), and low (< 1) levels of transcript were detected. Conclusions: No direct relationship was found between copy number and transgene expression levels. QC-PCR method could be implemented to screen putative transgenic plants and quickly select single T-DNA inserts. QC-PCR methods and the prepared competitor construct may be useful for future quantification of commercial transgenic food and feed.


Subject(s)
Brassica napus/enzymology , Brassica napus/genetics , Glycine/genetics , Oxidoreductases/genetics , Polymerase Chain Reaction/methods , Glycine/analogs & derivatives , Glycine/physiology , Oxidoreductases/physiology , Transcription, Genetic , Transgenes
2.
Braz. j. microbiol ; 42(3): 1017-1029, July-Sept. 2011. ilus, tab
Article in English | LILACS | ID: lil-607532

ABSTRACT

Chitinases have the ability of chitin digestion that constitutes a main compound of the cell wall in many of the phytopathogens such as fungi. In the following investigation, a novel chitinase with antifungal activity was characterized from a native Serratia marcescens B4A. Partially purified enzyme had an apparent molecular mass of 54 kDa. It indicated an optimum activity in pH 5 at 45ºC. Enzyme was stable in 55ºC for 20 min and at a pH range of 3-9 for 90 min at 25ºC. When the temperature was raised to 60ºC, it might affect the structure of enzymes lead to reduction of chitinase activity. Moreover, the Km and Vmax values for chitin were 8.3 mg/ml and 2.4 mmol/min, respectively. Additionally, the effect of some cations and chemical compounds were found to stimulate the chitinase activity. In addition, Iodoacetamide and Idoacetic acid did not inhibit enzyme activity, indicating that cysteine residues are not part of the catalytic site of chitinase. Finally, chitinase activity was further monitored by scanning electronic microscopy data in which progressive changes in chitin porosity appeared upon treatment with chitinase. This enzyme exhibited antifungal activity against Rhizoctonia solani, Bipolaris sp, Alternaria raphani, Alternaria brassicicola, revealing a potential application for the industry with potentially exploitable significance. Fungal chitin shows some special features, in particular with respect to chemical structure. Difference in chitinolytic ability must result from the subsite structure in the enzyme binding cleft. This implies that why the enzyme didn't have significant antifungal activity against other Fungi.


Subject(s)
Enzyme Activation , Fungicides, Industrial , Microscopy, Electron/methods , Chitin/analysis , Chitinases/analysis , Serratia marcescens , Methods , Methods , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL